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In this work we perform a dynamical analysis of a broad class of nonminimally coupled real scalar fields
in the Friedmann-Robertson-Walker (FRW) spacetime framework. The first part of our study concerns the
dynamics of an unspecified positive potential in a spatially curved FRW spacetime, for which we define a
new set of dimensionless variables and a new evolution parameter. In the framework of this general setup,
we have recognized several general features of the system, like symmetries, invariant subsets and critical
points, and provide their cosmological interpretation. The second part of our work focuses on flat FRW
cases for which the tracker parameter is constant; i.e., we examine specific classes of potentials. After
analyzing these cases dynamically, we discuss their physical interpretation.
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I. INTRODUCTION

The importance of scalar fields in cosmological frame-
works is manifold. In the context of inflation [1–4], for
instance, field theories have been proposed which could
appropriately explain the observational evidence of large-
scale homogeneity and flatness of the Universe, together
with several other features (the graceful exit from inflation
itself [5] and the subsequent reheating [6]). While the
specific mechanism giving rise to such an inflaton field is
still debated, several forms of potentials that are able to
trigger a transient phase of exponential expansion of the
Universe have been proposed; see, e.g., [7,8]. Scalar fields
play a major role as well in the description of the present-
day accelerated expansion of the Universe [9]: the simplest
and most effective model available, the Λ cold dark matter
model, considers a constant potential, but the origin of such
a cosmological constant is purely phenomenological and
cannot be physically motivated in the context of general
relativity and quantum field theory yet; however, other
potential forms [10,11] are also able to provide the
necessary slow-rolling dynamic of the field, which is
necessary for achieving a sufficiently negative pressure
and consequently an acceleration of the scale factor’s
expansion.
In a Lagrangian formulation of a gravitating scalar field,

the simplest choice is to ignore any direct coupling between

the field and the Ricci curvature, i.e., to consider the so-
called minimal coupling. However, the inclusion of cou-
pling terms involving products of the Ricci scalar with the
field (or its derivatives [12–14]) can be motivated in
different contexts: they can arise from quantum corrections
to the field in curved metrics [15,16] or as low-energy
limits of superstring theories or in induced gravity [17,18];
moreover, a nonminimal coupling can render the Higgs
field a good candidate for inflation [19], hence, giving a
cosmological status to the recently discovered particle [20].
On a more fundamental level, requiring a nonminimal
coupling is actually necessary in order to avoid causal
pathologies in the propagation of the fields in generic
curved backgrounds [21]. Several authors have analyzed
the repercussions of nonminimal couplings on the cosmo-
logical dynamics [22–31],
In the present paper we perform a global analysis of

models in which a curved Friedmann-Robertson-Walker
background is nonminimally coupled to a scalar field with
generic potential. A similar analysis in the context of
dynamical systems has been performed in [28] with the
additional presence of matter. Our goal here is to present an
alternative formulation which allows for several improve-
ments in the aforementioned analysis. Namely, we consider
a generic spatially curved Friedmann-Robertson-Walker
(FRW) model and we include in the analysis the collapsing
scenarios as well. In Sec. II we provide definitions of
dimensionless variables that render the invariant subsets
compact in a physically relevant range of the coupling
parameter ξ, without the need of further compactification
through an additional change of variables. In Sec. III we
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perform an initial analysis, keeping the potential of the field
completely unspecified (apart from its positivity): this
approach covers a class of potentials broader than the ones
in [28]. Under our general assumptions we derive the
existence, stability, and cosmological meaning of the
critical points of the system. It is known that the system
cannot be closed without specifying the functional form of
the potential: in Sec. IV we briefly review the case of
exponential potentials and then introduce the analysis of the
wide class of potentials characterized by a constant tracker
parameter Γ. In the latter case, we show that the models
with Γ ≥ const > 1 always posses de Sitter attractors,
irrespective of the value of the other parameters involved.
We start by considering the effective Lagrangian describ-

ing a scalar field ψ with generic potential VðψÞ and
nonminimally coupled to a FRW background spacetime:

L ¼ 6ð _a2 − kÞaUðψÞ þ 6_aa2 _ψU0ðψÞ − 1

2
a3 _ψ2 þ a3VðψÞ;

ð1Þ

where the dot and prime denote derivatives with respect to
the cosmic time and the scalar field, respectively. The
function UðψÞ specifies the type of coupling considered:
minimal coupling corresponds to a constant U ¼ 1=2,
while in the following we will consider the quadratic form:

U ¼ 1

2
ð1 − ξψ2Þ; ð2Þ

with ξ ≥ 0. The case ξ ¼ 1=6 corresponds to the conformal
coupling. With the choice of Eq. (2), we can explicitly
calculate the momenta conjugate to the generalized coor-
dinates fa;ψg, namely,

pa ≡ ∂L
∂ _a ¼ 6_aað1 − ξψ2Þ − 6ξa2ψ _ψ ð3Þ

pψ ≡ ∂L
∂ _ψ ¼ −6ξa2 _aψ − a3 _ψ ; ð4Þ

and hence the Hamiltonian function

H≡ pa _aþ pψ _ψ − L: ð5Þ

The Hamiltonian constraint is expressed by the condition
H ¼ 0 and it corresponds to the Friedmann equation

3

�
H2 þ k

a2

�
ð1 − ξψ2Þ ¼ 6ξHψ _ψ þ 1

2
_ψ2 þ VðψÞ; ð6Þ

where H ¼ _a=a is the FRW Hubble expansion. The
Hamilton-Jacobi equations,

_pa ¼
∂L
∂a ; _pψ ¼ ∂L

∂ψ ; ð7Þ

correspond, respectively, to Raychaudhuri and Klein-
Gordon equations:

�
2 _H þ 3H2 þ k

a2

�
ð1 − ξψ2Þ − 4ξHψ _ψ − 2ξψψ̈

¼ −ð1 − 4ξÞ 1
2
_ψ2 þ VðψÞ ð8Þ

ψ̈ þ 3H _ψ þ ∂ψV þ 6ξψ

�
_H þ 2H2 þ k

a2

�
¼ 0: ð9Þ

II. THE SYSTEM IN A NEW SET OF VARIABLES

In the minimally coupled case one can clearly distin-
guish two behaviors of the dynamics depending on the sign
of the spatial curvature: specifically, if k > 0 the expansion
scalar can change sign during the evolution, leading to
bounces or recollapses, while if k ≤ 0 the solutions are
either always expanding or always contracting. For this
reason, in order to construct well-defined dimensionless
variables in the case of positive curvature, one usually
employs the normalization

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ k=a2

p
which is positive

definite and does not vanish at the turning points of the
scale factor. Introducing a nonminimal coupling renders the
former distinction meaningless, due to the modifications of
the Raychaudhuri equation which allow for sign changes of
H during the evolution irrespective of the sign of k. Since
now the evolution of the scale factor can present turning
points in either curvature cases, we define a set of
dimensionless variables which is well-defined for both:

Ω ¼ ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξψ2

p ; ΩH ¼ H
D

ð10Þ

Ωψ ¼ _ψffiffiffi
6

p
D
; ΩV ¼

ffiffiffiffi
V

pffiffiffi
3

p
D

ð11Þ

Ω∂V ¼ ∂ψV

V
; Γ ¼ V · ∂2

ψV

ð∂ψVÞ2
ð12Þ

where

D2 ¼ H2 þ jkj
a2

: ð13Þ

A useful relation is the time evolution of D in terms of the
dimensionless variables:

_D
D2

¼ ΩH

�
_H
D2

þ Ω2
H − 1

�
: ð14Þ
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The Friedmann, Raychaudhuri and Klein-Gordon equa-
tions in terms of the normalized variables will take a
different form depending on the sign of the spatial
curvature (see next subsections). It is however possible
to derive a common autonomous system of equations for
the variables, with the evolution parameter defined by
dτ ¼ Ddt, by taking derivatives of the definitions with
respect to such a parameter and using Eq. (14):

Ω0 ¼
ffiffiffi
6

p
Ωψð1 − ξΩ2Þ3=2 ð15Þ

Ω0
H ¼ ð1 −Ω2

HÞ
�

_H
D2

þΩ2
H

�
ð16Þ

Ω0
ψ ¼ ψ̈ffiffiffi

6
p

D2
−ΩψΩH

�
_H
D2

þ Ω2
H − 1

�
ð17Þ

Ω0
V ¼ ΩV

� ffiffiffi
3

2

r
Ω∂VΩψ −ΩH

�
_H
D2

þ Ω2
H − 1

��
ð18Þ

Ω0∂V ¼
ffiffiffi
6

p
Ω2∂VΩψ ðΓ − 1Þ; ð19Þ

where Γ ¼ V · ∂2
ψV=ð∂ψVÞ2 is the so-called tracker param-

eter. The quantities _H and ψ̈ are obtained by decoupling
Eqs. (8) and (9) and they determine different dynamics for
the two curvature cases. For the generic nonminimally
coupled cases the decoupling of the Eqs. (8) and (9) can be
achieved by diagonalizing the following linear system:

�
2ð1 − ξψ2Þ −2ξψ

6ξψ 1

��
_H

ψ̈

�
¼

�
f1ðΩiÞ
f2ðΩiÞ

�
; ð20Þ

where f1ðΩiÞ and f2ðΩiÞ include the terms which are not
linear in _H and ψ̈ in Raychaudhuri and Klein-Gordon
equations, respectively, with Ωi representing the set of
dimensionless variables. In order to diagonalize the matrix
in Eq. (20) its determinant should be nonzero, i.e.,
ψ2ξð1 − 6ξÞ ≠ 1. The case ξ ¼ 0 is trivial, while the
conformal coupling case ξ ¼ 1=6, as we will see, leads
to a generic unboundedness of the invariant subsets of the
system. We will be mostly interested in the range ξ ∈
ð0; 1=6Þ for two reasons: first of all, the invariant subsets of
the system in this range of the parameter are compact;
moreover, in [32] the value of the coupling constant has
been constrained using observational data from the
Union2.1+H(z)+Alcock-Paczyński dataset and found to
be in good accord with values around the conformally
coupled case. In this sense we will scan the behavior of the
system inside the intersection between the physically
motivated and the mathematically convenient range. The
vanishing of the determinant for specific values of the field
implies the appearance of singularities in the system. Such
anomalies are independent of the definition adopted for the
dimensionless variables: different definitions would simply

move the singularities in different parts of the parameter
space. We point out that our choice of dimensionless
variables is particularly suitable for the analysis of the
late-time behavior of the system and for situations in which
the scalar field diverges ψ → �∞, because the new
variable Ω remains finite.

A. Positive curvature

When k > 0, the Friedmann equation can be expressed
in terms of the variables, Eqs. (10)–(12), in the following
form:

1 ¼ 2ξΩ2ð1 −Ω2
HÞ þ 3ξ

� ffiffiffi
2

3

r
ΩHΩþ Ωψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p �2

þ ð1 − 3ξÞΩ2
ψ ð1 − ξΩ2Þ þ Ω2

Vð1 − ξΩ2Þ: ð21Þ

Since from the definitions we have that Ω ∈
ð−1= ffiffiffi

ξ
p

; 1=
ffiffiffi
ξ

p Þ and ΩH ∈ ð−1; 1Þ, the constraint equa-
tion (21) defines a compact parameter space if ξ ∈ ð0; 1=6Þ
(see the discussion in Sec. II C paragraph b). From the
Klein-Gordon and Raychaudhuri equations we get

ψ̈ffiffiffi
6

p
D2

¼ −3ΩHΩψ −
ffiffiffi
3

2

r
Ω∂VΩ2

V

−
ffiffiffi
6

p
ξΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξΩ2
p �

_H
D2

þΩ2
H þ 1

�
; ð22Þ

_H
D2

þΩ2
H þ 1¼ −

1

1− 2ξð1− 3ξÞΩ2

�
−
1

2
ð1− 2ξΩ2Þ

þ ξΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ξΩ2

p
ð

ffiffiffi
6

p
ΩHΩψ þ 3Ω∂VΩ2

VÞ

þ 3

2
ð1− ξΩ2Þ½ð1− 4ξÞΩ2

ψ −Ω2
V �
�
: ð23Þ

B. Nonpositive curvature

Applying the same definitions given by Eqs. (10)–(12) to
the case of nonpositive spatial curvature k ≤ 0, one can
express the Friedmann constraint in the following form:

1 ¼ 2ð1 − ξΩ2Þð1 −Ω2
HÞ

þ 3ξ

� ffiffiffi
2

3

r
ΩHΩþ Ωψ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p �2

þ ð1 − 3ξÞΩ2
ψð1 − ξΩ2Þ þΩ2

Vð1 − ξΩ2Þ: ð24Þ

In this case, the parameter space spanned by such variables
is not compact, because Ωψ diverges as Ω → �1=

ffiffiffi
ξ

p
.

Equations (8) and (9) give
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ψ̈ffiffiffi
6

p
D2

¼ −3ΩHΩψ −
ffiffiffi
3

2

r
Ω∂VΩ2

V

þ
ffiffiffi
6

p
ξΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ξΩ2
p �

1 −
_H
D2

− 3Ω2
H

�
; ð25Þ

_H
D2

þΩ2
H ¼ 1

2
−Ω2

H þ 1

1− 2ξð1− 3ξÞΩ2

�
3ξ2Ω2ð1− 2Ω2

HÞ

− ξΩ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ξΩ2

p
ð

ffiffiffi
6

p
ΩHΩψ þ 3Ω∂VΩ2

VÞ

−
3

2
ð1− ξΩ2Þ½ð1− 4ξÞΩ2

ψ −Ω2
V �
�
: ð26Þ

C. General features of the system

a. Symmetries. The dynamical system, (15)–(19),
remains invariant under the simultaneous transformation
fΩ; ΩH; Ωψ ; ΩV; Ω∂Vg → f−Ω; ΩH; −Ωψ ; ΩV; −Ω∂Vg.
Physically such symmetry is equivalent to the invariance
under the transformation ψ → −ψ . Having assumed the
positivity of the potential, we have thatVð−ψÞ is still positive
and hence ΩV is not affected by this transformation.
b. Singularities. As we have discussed before, the

decoupling of Raychaudhuri and Klein-Gordon equations
cannot be carried out if the determinant of Eq. (20)
vanishes: the points where this is the case appear as
singularities in the autonomous system. In terms of
dimensionless variables, these singularities correspond to
the vanishing of the denominators in Eqs. (23) and (26),
namely,

Ω ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ξð1 − 3ξÞp : ð27Þ

By plugging Eq. (27) into the Friedmann constraints and
solving for Ωψ we get

Ωψ ¼
ffiffiffiffiffi
6ξ

p
ΩH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΩ2

H ∓ Ω2
V − 1Þ6ξ� Ω2

V

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6ξ

p ; ð28Þ

where the upper/lower sign corresponds to negative/pos-
itive curvature. In either cases, the coordinates ðΩ;ΩψÞ of
the singularity remain finite in the range ξ ∈ ð0; 1=6Þ. For
ξ > 1=6, Ωψ is complex. In the case of a flat spacetime
ΩH ¼ �1 we call these singularities S�, respectively.
Comparing with [28], we note that for Ω2

H ¼ 1 and
ΩV ¼ 0 this corresponds to their critical point 1, which
was identified as a finite scale factor singularity. Such a
critical point was identified thanks to a time reparametri-
zation [see Eq. (2.14) of [28]], which, however, we are not
considering here as it is ill defined in the point (27).
c. Invariant subsets. Invariant submanifolds are very

useful tools in studying a dynamical system, as they allow
us to characterize and understand some global features of
the phase space. One can identify some invariant subsets of
the system equations, (15)–(19), namely, ΩH ¼ �1 (flat
spacetime) and ΩV ¼ 0 (free scalar field). For the latter
case, we plot in the left and right panels of Fig. 1 the
Friedmann constraints, (21) and (24), respectively; in the
middle panel of Fig. 1 we plot the Friedmann constraint in
the spatially flat expanding case ΩH ¼ 1 (the collapsing
case can be obtained by transforming Ωψ → −Ωψ ). Notice
that our definitions of variables allow us to have compact
invariant subsets for the positive and zero curvature cases,
but not for the negative curvature case.
Although from the system of equations, Ω ¼ �1=

ffiffiffi
ξ

p
looks like an invariant subset, it is actually outside of the
Friedmann constraint in the case of positive and zero spatial
curvature; for negative curvature, instead, the Friedmann
constraint in that locus reduces to Ω2

H ¼ 1=2.
The condition Ω∂V ¼ const, which is equivalent to

Γ ¼ 1 (including the Ω∂V ¼ 0 case), looks also like an
invariant subset due to Eq. (19), but this is a more subtle

FIG. 1. Invariant subsets constrained by the Friedmann equations for ξ ¼ 1=10. Left panel: Positive curvature equation (21) for
ΩV ¼ 0. Middle panel: Spatially flat equations (21) and (24) for ΩH ¼ 1. Right panel: Nonpositive curvature equation (24) for ΩV ¼ 0.
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case, since choosing a constant value of Ω∂V actually
constrains the form of the potential to the exponential form
V ¼ V0eΩ∂Vψ (see, e.g., [33] and references therein). We
will discuss these kinds of potentials in Sec IV. However, as
the potential V is a function of the field ψ only, in order to
allow for the most general forms of the potential,Ω∂V has to
be left as a general function of Ω.

III. CRITICAL POINTS AND THEIR
INTERPRETATION

To study the behavior of the dynamical system equa-
tions (15)–(19), we need to derive the equilibrium points of
the system. The equilibrium points (or critical points) of the
system Ω0 ¼ f ðΩÞ correspond to those points Ωc that
satisfy Ω0ðΩcÞ ¼ 0, which means that the system is at rest.
The stability of the critical points can be investigated by
inspecting the eigenvalues of the Jacobian matrix of the
linearized system evaluated at each critical point: if the real
part of all eigenvalues is positive (respectively, negative),
then the point is an unstable source (respectively, stable
sink); mixed signs of the eigenvalues signal the presence of
a saddle point; the presence of vanishing eigenvalues means
that the critical point is nonhyperbolic and one would need
to implement a further method in order to ascertain the
stability unambiguously—or resort to numerical and visual
approaches.
One can interpret the critical points in terms of cosmo-

logical models thanks to several physical quantities, such as
the deceleration parameter

q ¼ −1 −Ω−2
H

_H
D2

; ð29Þ

and the effective equation of state parameter, which stems
from considering the scalar field as a barotropic fluid
sourcing the unmodified Einstein equations with the
equation of state

we ¼
pe

ϵe
; ð30Þ

where from Eqs. (6) and (8) we define the effective energy
density and pressure, respectively,

ϵe ≔ 3

�
H2 þ k

a2

�
; ð31Þ

pe ≔ −2 _H − 3H2 −
k
a2

: ð32Þ

A. Two de Sitter critical points

The coordinates of these two critical points are
fΩ;ΩH;Ωψ ;ΩV;Ω∂Vg ¼ f0;�1; 0; 1; 0g. One of these
points (called Aþ) has ΩH ¼ 1 and it describes an

exponentially expanding model, i.e., a ∼ eH0t, with the
typical cosmological constant behavior given by q ¼ −1
and we ¼ −1. The corresponding eigenvalues are

fλAþ
i g ¼

�
−3;−2; 0;−

ffiffiffi
3

p

2
ð

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 16ξ

p
Þ;

ffiffiffi
3

p

2
ð−

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 16ξ

p
Þ
�
; ð33Þ

where the i ¼ 1;…; 5. The real parts of all the nonvanish-
ing eigenvalues are always negative.
The critical point with ΩH ¼ −1 (called A−) describes

an exponentially collapsing model, i.e., a ∼ e−H0t with
q ¼ −1 and we ¼ −1. The eigenvalues in this case are

fλA−
i g ¼

�
3; 2; 0;

ffiffiffi
3

p

2
ð

ffiffiffi
3

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 16ξ

p
Þ;

ffiffiffi
3

p

2
ð

ffiffiffi
3

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − 16ξ

p
Þ
�
: ð34Þ

The real part of all the nonvanishing eigenvalues is always
positive.
For both points, the eigenvalues are complex in the range

ξ > 3=16: this signals a transition of the character of the
critical points from node to focus and it is in accord with the
findings of [34]. Since Ω∂V ¼ 0, then in a neighborhood of
the critical points V ¼ V0 > 0: this eliminates the relevance
of the Ω0∂V equation in such a neighborhood. Using the
remaining 4 × 4 system of equations with Ω∂V ¼ 0, one
recovers exactly the above sets of eigenvalues, (33) and
(34), where the λA�

3 ¼ 0 are missing. This indicates that
indeed the Aþ and A− are a sink and a source, respectively.

B. Two de Sitter critical lines

These critical points lie along the segments 0 < Ω2 < 1
2ξ

for the cases ΩH ¼ �1 with Ωψ ¼ 0, Ω2
V ¼ 1−2ξΩ2

1−ξΩ2 and1

Ω∂V ¼ −
4ξΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p
1 − 2ξΩ2

: ð35Þ

In this case one can derive a form of the potential in a
neighborhood of the critical lines by integrating the
definition of Ω∂V as a function of Ω given above: trans-
forming back to the variable ψ one obtains

V ¼ V0ð1 − ξψ2Þ2; ð36Þ

as well as H ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0ð1 − ξψ2Þ=3

p
. Potential (36) has a

Higgs-like form which can provide a symmetry breaking

1Note that the since ΩV > 0 by definition, the only acceptable

solution is ΩV ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1−2ξΩ2

1−ξΩ2

q
(Table I). Similarly, in Sec. III A from

ΩV ¼ �1 we accept only ΩV ¼ 1.
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Goldstone mechanism. One can see thatΩ ¼ 0 corresponds
to the local maximum of the potential, while Ω ¼ �1=

ffiffiffiffiffi
2ξ

p
corresponds to the global minima.
Exactly on the critical lines, both the potential V and the

Hubble parameter H are constant, thus describing expo-
nentially expanding and collapsing models with a ∼ e�Ht,
respectively. For calculating the eigenvalues below, we
need to specify Γ. To do this, we use the local expression of
the potential (36). These points for ΩH ¼ 1 (called Bþ)
describe sinks, since they have eigenvalues

fλBþ
i g ¼ f0;−2; 0;−3;−3g; ð37Þ

which holds in the allowed ranges of ξ and Ω.
The critical points for ΩH ¼ −1 (called B−) have

eigenvalues

fλB−
i g ¼ f0; 2; 3; 3; 0g; ð38Þ

thus, we can interpret B− as source points.
Critical points Aþ and Bþ agree with critical points 5 of

[28]; in our analysis there are additionally the A− and B−
sources describing collapsing models. As it is stressed in
[28] the evolution of the system is independent of the form
of the potential, but we find that in the neighborhood of B�
the potential has to acquire the form (36).
One would expect that in the limit Ω → 0 one should

recover the eigenvalues of the previous critical point, i.e.,
fλB�

i g → fλA�
i g, which however is not the case, since

potential (36) is just an approximation holding in the
neighborhood of the critical line. However, the feature
that matters for the local stability is the sign of the fλB�

i g.
Just like in Sec. III A, specifying the local form of the
potential makes one equation of motion redundant and thus
reduces the dimensionality of the system.

C. Two radiation-like critical lines

There exist other sets of critical points arranged as
critical lines with coordinates

fΩ;ΩH;Ωψ ;ΩV;Ω∂Vg ¼
�
� 1ffiffiffiffiffi

2ξ
p ;�1; 0; 0; ∀

�
: ð39Þ

The cosmological parameters at these points are q ¼ 1 and
we ¼ 1

3
, which are in agreement with the model describing a

radiation dominated universe in which the scale factor
evolves like a ∼

ffiffi
t

p
. The corresponding eigenvalues are

fλCþ
i g ¼ f2; 2;−1; 1; 0g; ð40Þ

for ΩH ¼ 1 (called Cþ), and

fλC−
i g ¼ f−2;−2;−1; 1; 0g; ð41Þ

for ΩH ¼ −1 (called C−).
To investigate the exact form of the scale factor, from the

Raychaudhuri equation we get

H ¼ 1

2ðt − t0Þ þ 1
H0

; ð42Þ

where H0 is the Hubble parameter value at time t0
with a0 ¼ 1. For expanding models ( _a > 0)
a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H0ðt − t0Þ þ 1
p

with t > t0 − 1
2H0

, while for collaps-

ing models ( _a < 0) a ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð2H0ðt − t0Þ þ 1Þp

with
t < t0 − 1

2H0
. Since the eigenvalues of both critical lines have

real parts withmixed signs, they correspond to saddle points.
The set of points Bþ agrees with critical point 3.b of [28].

D. Two Milne-like critical planes

These critical points lie on planes defined by
fΩ;ΩH;Ωψ ;ΩV;Ω∂Vg ¼ f∀ ;� 1ffiffi

2
p ; 0; 0; ∀g.2 All points

in this case describe vacuum FLRW spacetime with
negative spatial curvature. This model is known as the
Milne universe with the scale factor a ¼ c2ðtþ c1Þ and
Hubble function H ¼ 1

tþc1
. Given that Ω2

H ¼ 1=2, one finds

that c22 ¼ jkj. From the definitions of the effective energy
and pressure, (31) and (32), we get that ϵe ¼ 0 and pe ¼ 0.
This implies that we have a vacuum universe dominated by
negative curvature and the effective equation of state
parameter (30) is undefined. Furthermore, this implies that
D → 0 for t → ∞. Since ΩV ¼ 0 andΩψ ¼ 0 in the critical
point, we necessarily have that _ψ → 0 and V → 0, both
faster than D approaches zero. Since we do not have a
specific form for the potential, the limiting value of Ω∂V
remains unspecified.
For the line with ΩH ¼ 1ffiffi

2
p , which we call Dþ, we get the

eigenvalues

fλDþ
i g ¼

�
0; 0;

1ffiffiffi
2

p ;−
ffiffiffi
2

p
;−

1ffiffiffi
2

p
�
; ð43Þ

and for ΩH ¼ − 1ffiffi
2

p , which we call D−, we get

fλD−
i g ¼

�
0; 0;−

1ffiffiffi
2

p ;
1ffiffiffi
2

p ;
ffiffiffi
2

p �
: ð44Þ

The mixed character of the eigenvalues identifies these
critical planes as saddles.

2Note that ∀ means any Ω satisfying the Friedmann con-
straint. In our case Ω2 ≤ 1

2ξð1−3ξÞ.
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IV. SPECIFIC POTENTIAL CASES

Once a form of potential is chosen, the system is
completely specified and the variable Ω∂V becomes redun-
dant. In the most general caseΩ∂V has to be a function ofΩ
only, because V ¼ VðψÞ. This fact allows us to rewriteΩ0∂V
as

Ω0∂V ¼ ∂Ω∂V
∂Ω Ω0: ð45Þ

Using now Eqs. (15) and (19) we obtain the following
differential equation (for Ωψ ≠ 0):

∂Ω∂V
∂Ω ð1 − ξΩ2Þ3=2 ¼ Ω2∂VðΓðΩÞ − 1Þ: ð46Þ

To consider Ω∂V ¼ Ω∂VðΩÞ has been our assumption up to
here. One can, however, make a different, less general
assumption, like in [28] where it is assumed that Ω ¼
ΩðΩ∂VÞ and Γ ¼ ΓðΩ∂VÞ: this implies that Ω∂V ¼ Ω∂VðΩÞ
has to be an invertible function, which might not always be
the case. In the cases in which this is true, it holds that

ψ ¼
Z

dΩ∂V
Ω2∂VðΓðΩ∂VÞ − 1Þ ; ð47Þ

cf. Eq. (2.16) in the reference above.
Dropping the discussion of general potential forms, in

this section we are going to focus our study on specific
classes of potentials and further restrict our analysis on
spatially flat spacetime, which corresponds to an invariant
subset of the system. In particular, once the form of
potential is chosen, the system reduces to four dimensions;
further, by assuming ΩH ¼ �1 and by employing the
Friedmann constraint the system effectively reduces to
two dimensions, evolving on the ðΩ;Ωψ Þ plane. Thus, the
critical points discussed in Sec. III and singularities of the
system (see Sec. II C) will be depicted in the invariant
subsets.
Some of these points are independent of the form of

potentials and hence will be present in every specific case
that we will discuss below. These points are

(1) Big bang and big crunch: There are two points
Sþ on the invariant subsets ΩH ¼ 1 at fΩ;Ωψg →

f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ξð1−3ξÞ

q
;∓

ffiffiffiffiffiffiffiffi
6ξ

1−6ξ

q
g, which are the singular

points of the system and act like big bang
sources. Moreover, there are two points S− on
the invariant subset ΩH ¼ −1 at fΩ;Ωψg →

f�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2ξð1−3ξÞ

q
;�

ffiffiffiffiffiffiffiffi
6ξ

1−6ξ

q
g: these are also singular

points of the system and act like big crunch sinks.
In order to recognize the cosmological character of
such points, recall the definition of the evolution
parameter of system τ ¼ � ln a, where plus/minus
applies to the expanding/collapsing dynamics: as the
critical points are approached along the trajectories
we have that the parameter τ →∓∞ and hence in
both cases a → 0.

(2) Radiationlike transient phase: One can find saddle
points Cþ or C− with coordinates fΩ;Ωψg →
f� 1ffiffiffiffi

2ξ
p ; 0g in each invariant subset. These points

describe a radiationlike universe since we ¼ 1=3
(see Table I), and evolution flows around them
define a possible radiationlike transition phase of
the universe.

In order to find the locations of the de Sitter points B� in
the invariant subsets, one needs instead to specify the form
of the potential.

A. Γ = 1: exponential potentials

For the special cases when Γ ¼ 1 it holds that
Ω∂V ¼ const; thus, in this case, the potentials are of the
form

V ¼ V0eΩ∂Vψ :

Each system with ΩH ¼ 1 has one sink at the coordinate:

(i) fΩ;Ωψg → f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ξ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

∂Vξþ4ξ2
pq

; 0g forΩ∂V < 0;

(ii) fΩ;Ωψg → f−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ξ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

∂Vξþ4ξ2
pq

; 0g forΩ∂V > 0;

(iii) fΩ;Ωψg → f0; 0g forΩ∂V ¼ 0:

TABLE I. The critical elements of the system and their stability in the range 0 ≤ ξ ≤ 1=6.

Ωψ ΩH Ω ΩV Ω∂V Curvature q we Stability

Aþ 0 1 0 1 0 Flat −1 −1 Sink
A− 0 −1 0 1 0 Flat −1 −1 Source
Bþ 0 1 0 < Ω2 < 1

2ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−2ξΩ2

1−ξΩ2

q
− 4ξΩ

ffiffiffiffiffiffiffiffiffiffi
1−ξΩ2

p
1−2ξΩ2

Flat −1 −1 Sink

B− 0 −1 0 < Ω2 < 1
2ξ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−2ξΩ2

1−ξΩ2

q
− 4ξΩ

ffiffiffiffiffiffiffiffiffiffi
1−ξΩ2

p
1−2ξΩ2

Flat −1 −1 Source

C� 0 �1 � 1ffiffiffiffi
2ξ

p 0 ∀ Flat 1 1
3

Saddle

D� 0 � 1ffiffi
2

p ∀ 0 ∀ Negative 0 � � � Saddle
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These three cases correspond to the points Bþ depicted
on the right column of Fig. 2, from top to bottom. With
ΩH ¼ −1 instead the system has a source at the coordinate:

(i) fΩ;Ωψg → f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ξ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

∂Vξþ4ξ2
pq

; 0g forΩ∂V < 0;

(ii) fΩ;Ωψg → f−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ξ −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

∂Vξþ4ξ2
pq

; 0g forΩ∂V > 0;

(iii) fΩ;Ωψg → f0; 0g forΩ∂V ¼ 0:

These cases correspond to the points B− depicted in the left
column of Fig. 2, from top to bottom. For a global view see
Fig. 3: horizontal slicings correspond to different constant
values of Ω∂V .

B. Constant Γ ≠ 1

Assuming Γ ≠ 1 and constant, we can integrate Eq. (46)
and obtain

Ω∂V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p
ð1 − ΓÞΩ − c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p : ð48Þ

Using the definition of Ω∂V , this expression can be
integrated again, resulting in the following family of
potentials:

V ¼ V0ðð1 − ΓÞψ − c1Þ 1
1−Γ: ð49Þ

The denominator of Eq. (48) introduces a singular line
when

c1 −
ð1 − ΓÞΩffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p ¼ 0 ð50Þ

and the location of the singular line is at
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FIG. 2. Some invariant subsets Ω∂V ¼ const for ξ ¼ 1
10
. The left column of panels shows ΩH ¼ −1 cases, while the right column

shows the ΩH ¼ 1 cases. Upper panels show Ω∂V ¼ −1, the middle ones Ω∂V ¼ 1, and the lower ones Ω∂V ¼ 0. Blue dots identify
sources, red dots are sinks, and black ones are saddle points. The green areas denote the phase of accelerated expansion q < 0.
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Ω2
s ¼

c21
ð1 − ΓÞ2 þ ξc21

<
1

2ξð1 − 3ξÞ ð51Þ

for ∀Ωψ inside the Friedmann constraint apart from the
Friedmann constraint’s outer edge (ΩV ¼ 0). The inequal-
ity in Eq. (51) comes from the restrictions of Ωs between
the singularities (27) discussed in Sec. II C, also shown in
Figs. 2 and 3. Further, Eq. (50) indicates that

(i) when Γ < 1 then the sign of Ω [Eq. (51)] has to be
the same as that of c1,

(ii) while when Γ > 1, then the sign of Ω [Eq. (51)] has
to be the opposite of c1.

In order to find the critical points B� for the potential
(49) we equate Eq. (48) with the value of Ω∂V [Eq. (35)]
presented in Sec. III B. Note that by doing this we select a
particular case of the general treatment. This provides the
following relation that will be helpful in order to determine
which critical points are inside the Friedmann constraint:

c1Ω ¼ 1þ 2ξΩ2ð1 − 2ΓÞ
4ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξΩ2

p : ð52Þ

Solving the equation above provides four solutions for Ω:

Ω�;� ¼� 1ffiffiffiffiffi
2ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4c21ξþ2Γ−1Þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21ξð4c21ξþ4Γ−3Þ

p
4ðc21ξþΓðΓ−1ÞÞþ1

s
;

ð53Þ

where the first set of signs in the definition refers to the
global sign, while the second one refers to the sign under
square-root.3 The existence of such critical points depends
on the relative sign of c1 and Ω as expressed in Eq. (52);
then, if a root exists, we need additionally a condition for it
to satisfy the Friedmann constraint. In Tables II–IV we give
the exact ranges of parameters in which the roots (53) exist.
In particular,
(1) if Γ ≤ 1=2, then the numerator of Eq. (52) is positive

and hence c1 and Ω should have the same sign, i.e.,
c1 ·Ω > 0. This implies that only the two roots
among those in Eq. (53) with the same global sign as
c1 will be allowed. Additionally, the Friedmann
constraint and the combination of parameters will
define whether these two roots will appear or not, as
shown in Table II. When both roots exist, they

FIG. 3. Global view of the parameter space for the system with
Γ ¼ 1, ΩH ¼ 1, and ξ ¼ 1=10. The dynamics takes place inside
every horizontal plane with constant Ω∂V ; the case Ω∂V ¼ −1 is
shown as representative. For a better view, the closed boundary
surface corresponding to ΩV ¼ 0 is cut along the plane Ωψ ¼ 0.
The blue dashed line is one set of sources, the black lines are the
saddles, and the red line is the set of future attractors.

FIG. 4. Global view of the parameter space for the system with
Γ ≠ 1 and constant, ΩH ¼ 1, ξ ¼ 1=10, and c1 ¼ 0. The dy-
namics takes place inside every horizontal plane with constant Γ;
the cases Γ ¼ 1=2 and Γ ¼ 3=2 are shown as representative.
For a better view, the closed boundary surface corresponding to
ΩV ¼ 0 is cut along the planeΩψ ¼ 0. The blue dashed line is the
set of sources, the black lines are the saddles, and the red lines
are the sets of future attractors.

3One can easily check that these four roots appear as critical
points of the general dynamical system when Ω∂V is given by
Eq. (48).
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appear on the same side of the singular line Ωs: if
c1 > 0, then Ωþ− is a sink (source) while Ωþþ is a
saddle; if c1 < 0, then Ω−− is a sink (source) while
Ω−þ is a saddle.

(2) if 1=2 < Γ < 1, then

1þ 2ξΩ2ð1 − 2ΓÞ > 1 − 2ξΩ2 > 0; ð54Þ

where the last inequality comes from the Friedmann
constraint. This has the same implication as the case
above about the relative signs of c1 and Ω. In this
case there is at most one root; see Table III for the
details.

(3) if Γ > 1, the numerator of Eq. (52) has two roots
Ω ¼ �ð2ξj1 − 2ΓjÞ−1=2: between these roots the
numerator is positive, while outside it is negative.
The sign of c1 ·Ω has to be the same as the one of
the numerator, thus determining which of the roots
in Eq. (53) are present; see Table IV. When both
roots exist, the singular lineΩs lies between them; in
this case Bþ (B−) retain their sink (source) nature.

It is worth stressing that the critical points Ω��, denoted as
B� in Figs. 5–7, move inside the Friedmann constraint
along the line Ω ¼ 0 when the parameters change in the
ranges allowed by Tables II, III, and IV. In cases 1 and 3
above, when ξc21 → ð1 − ΓÞ2, then Ω�þ approaches the

position of the radiationlike saddle points C�; in case 2, the
same happens for Ω�−. However, the cosmological inter-
pretation of points B� is preserved as they move and Table I
excludes the caseΩ2 ¼ 1=2ξ for the de Sitter sinks/sources:
hence the de Sitter character which is preserved as the
points move is not in contradiction with the radiation
character on the boundary in the above-mentioned limit.
Figure 4 provides a global overview of the parameter space
for the system with Γ ≠ 1 and constant.
In Fig. 5 we show the case Γ ¼ −1, corresponding to a

potential V ∝ ffiffiffiffi
ψ

p
which has some interesting dynamical

property but is otherwise physically questionable. From top
to bottom, we change gradually the parameter c1 in order to
show how one of the de Sitter points Bþ appears inside the
Friedmann constraint and changes its character from sink to
saddle. In the top panel such a point is outside the
constraint, in the middle panel, it coincides with the
radiation-like saddleCþ, and in the bottom panel, it appears

TABLE III. Existence of the roots (53) for 1=2 < Γ < 1.

c1 < 0 c1 ¼ 0 c1 > 0

Ωþþ � � � � � � � � �
Ωþ− � � � � � � ξc21 > ð1 − ΓÞ2
Ω−þ � � � � � � � � �
Ω−− ξc21 > ð1 − ΓÞ2 � � � � � �

TABLE IV. Existence of the roots (53) for Γ > 1.

c1 < 0 c1 ¼ 0 c1 > 0

Ωþþ 0 < ξc21 < ð1 − ΓÞ2 ∀ξ � � �
Ωþ− � � � ∀ξ ∀ξ
Ω−þ � � � ∀ξ 0 < ξc21 < ð1 − ΓÞ2
Ω−− ∀ξ ∀ξ � � �
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FIG. 5. For the case ξ ¼ 1
10

invariant subsets for Γ ¼ −1. The

upper panel shows c1 ¼
ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
þ 5, the middle panel

c1 ¼
ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
, and the bottom panel c1 ¼

ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
− 2. The green

areas denote the phase of accelerated expansion q < 0.

TABLE II. Existence of the roots (53) for Γ ≤ 1=2.

c1 < 0 c1 ¼ 0 c1 > 0

Ωþþ � � � � � � 3
4
− Γ ≤ ξc21 < ð1 − ΓÞ2

Ωþ− � � � � � � ξc21 >
3
4
− Γ

Ω−þ 3
4
− Γ ≤ ξc21 < ð1 − ΓÞ2 � � � � � �

Ω−− ξc21 >
3
4
− Γ � � � � � �
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as a saddle on the right-hand side of the singular segment.
The dynamical setup of the bottom panel is quite intriguing,
as it presents de Sitter phases both as a transient and as an
asymptotic attractor; note, however, that the potential is
complex on the left-hand side of the singular segment, so
one cannot give a physical interpretation to such dynamics.
In the next subsection instead we will present some
physically meaningful cases.

C. Physical interpretation

In this section we focus on the cases with Γ ≠ 1 that
could have physical interest. Our discussion will be con-
strained to ΩH ¼ 1 and we will keep ξ ¼ 1=10 for our
examples.
First of all, our initial requirement of positivity of the

potential translates into the choice Γ ¼ 2nþ1
2n for n ∈ Z: the

set of potentials characterized by such exponents are
positively defined on the real axis. Depending on the sign
of the integer n one can identify the following classes:
(1) if n ∈ N−, then Γ > 1 and the potentials have the so-

called runaway form:

V ¼ V0

�
ψ

2jnj þ c1

�
−2jnj

ð55Þ

(2) if n ∈ Nþ, then 1=2 ≤ Γ < 1 and the potentials are
positive even powers of the (shifted) field:

V ¼ V0

�
ψ

2n
− c1

�
2n
: ð56Þ

As one usually considers only potentials with even powers
of the field, the cases Γ < 1=2 are excluded. Note that
potentials equation (56) can be considered as truncated
Taylor expansions of more general potentials.
One can check whether a potential defines a mass for the

scalar field by analyzing the second derivative ∂2
ψV in a

local minimum ψ̄ of V itself. While in class 1 there is no
such minimum for finite values of the field, in class 2 we
can distinguish

(i) n ¼ 1 ⇒ Γ ¼ 1=2 and ð∂2
ψVÞψ̄ ¼ V0=2 > 0, mas-

sive scalar field;
(ii) n ≥ 2 ⇒ ð∂2

ψVÞψ̄ ¼ 0, massless scalar field.
Hence, in the class of positive definite potentials, only the
ones with Γ ¼ 1=2 have nonzero mass. This case corre-
sponds to the simple quadratic potential.
On the other hand, one could relax the requirement of

positivity and well-definedness of the potential on the
whole real axis and accept also potentials which are defined
only for some ranges of ψ . Potentials of class 1 diverge in
ψ0 ¼ 2jnjc1 and the field is expected to roll down the slope
only on one side of ψ0: this translates into a dynamics
which is confined only on one side of the singular line (51)
in the parameter space. Hence, in the case of runaway
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FIG. 6. For the case ξ ¼ 1
10

invariant subsets for Γ ¼ 3=2. The upper left panel shows c1 ¼
ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
þ 1, the upper right panel

c1 ¼
ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
, and the bottom ones c1 ¼

ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
− 1. The green areas denote the phase of accelerated expansion q < 0. The bottom

right panel shows the effective equation of state parameter corresponding to the black-dashed trajectory in the left bottom panel, with
initial conditions given by fΩ ¼ 5=2;Ωψ ¼ −1 − 1=

ffiffiffi
3

p g.

CLASSES OF NONMINIMALLY COUPLED SCALAR FIELDS IN … PHYS. REV. D 99, 123516 (2019)

123516-11



potentials one could, in principle, allow for any real value
in the range Γ > 1 and be careful to consider only the
dynamics in the appropriate side of the parameter space.
For instance, in Fig. 6 we represent the case Γ ¼ 3=2, for
which the runaway-type potential is real and positively
defined on the whole real axis except for the singular point
ψ0: hence the field can, in principle, roll down on both sides
of the singularity, depending on the initial conditions, and
both sides of the parameter space are physically admissible.
For c1 <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ΓÞ2=ξ

p
, the model evolves towards an

asymptotic de Sitter attractor on both sides.
For the massless case Γ ¼ 3=4 we give a couple of

examples in Fig. 7. In the top panel we show a case where
the Ωs splits the invariant subset in two parts. The flow of

the stream plot indicates that the trajectories oscillate
around the Ωs segment. However, this interpretation is
ambiguous since the flow has to reach the invariant subset
ΩV ¼ 0 to pass from one side to the other. The problem
stems from our choice of variables which makes the system
singular around the minimum of the potential. Thus, the
cases we can interpret clearly in the range 1=2 < Γ < 1 are
the ones for which Ωs lies outside the Friedman constraint:
such a case is shown in the middle panel of Fig. 7. For one
of the trajectories of the middle panel (dashed black line)
we provide also the evolution of the effective equation of
state, which starts from ultrastiff close to Sþ and ends up at
the de Sitter sink.

V. CONCLUSIONS

We have started our study in a very general setup of
nonminimally coupled real scalar fields in a FRW space-
time in the absence of regular matter. Namely, in a spatially
curved FRW we have specified only the coupling term and
not the potential of the scalar field, which we have just
demanded to be positive. Transforming properly the var-
iables of the system we have achieved to end up with a new
set of dimensionless variables, which are bounded for most
of the parameter ranges we consider and are well defined
even for recollapsing scenarios. In this general setup, we
have investigated the general features of the system, some
of which we recall below:

(i) There are singularities lying on the boundaries of the
Friedmann constraint. In the case of the flat spacetime
ΩH ¼ �1 we have named them S�, respectively, Sþ
singularities act as sources and S− as sinks.

(ii) For the positive curvature and the flat FRW cases,
the invariant subsets are compact in our new
variables in the range ξ ∈ ð0; 1=6Þ.

(iii) The critical points, we have found, can be separated
into three categories: de Sitter points, radiationlike
points and Milne-like points. The critical points of
the first two categories exist for the spatially flat
FRW, while the Milne-like points exist for the FRW
with negative curvature. The critical points found for
the spatially flat case are in agreement with those
found in [28]. Note, however, that our analysis
covers a broader family of potentials than the one
in [28] and takes into account also collapsing
scenarios. The critical points found for the negative
curvature were analyzed in this context for the
first time.

We start the second part with the reasonable assumption
that Ω∂V depends only on Ω [because V ¼ VðψÞ] and
derive the general equation (46), which can be integrated in
order to obtain classes of potentials. We further specialize
our investigation for spatially flat cases and constant
tracking parameter Γ: on the one hand, the case Γ ¼ 1
corresponds to the well-known exponential potential; on
the other hand, Γ ≠ 1 provides the broad class of potentials
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FIG. 7. Top panel: Invariant subset ΩH ¼ 1 for Γ ¼ 3=4
(V ∝ ψ4), c1 ¼ 0 and ξ ¼ 1=10. Middle panel: Invariant subset

ΩH ¼ 1 for Γ ¼ 3=4, c1 ¼
ffiffiffiffiffiffiffiffiffiffi
ð1−ΓÞ2

ξ

q
þ 1 and ξ ¼ 1=10. Bottom

panel: Evolution of the effective equation of state parameter for
the black-dashed trajectory showed in the middle panel, with
initial conditions fΩ ¼ −2.63;Ωψ ¼ 0.9g.
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given in Eq. (49). The latter case is further divided into two
main subclasses: Γ > 1 corresponds to runaway potentials,
while Γ < 1 corresponds to potentials with positive powers
of the field. The free parameters of the model are ξ, Γ and
the integration constant c1: we analyze in detail the ranges
of values for which the de Sitter critical points exist inside
the Friedmann constraint. We find that, while the Γ > 1
cases are easily interpreted as transitions from an early-time
ultrastiff era towards a late-time de Sitter expansion
(possibly passing through an intermediate radiation epoch),
the cases 1=2 < Γ < 1 might present a singular behavior
introduced by our choice of coordinates; if Γ < 1=2, the

potentials might be real and positive only in some ranges of
the field, which implies that only some portions of the
parameter space can have physical interpretation.
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